Home
site map
email

healthknot.com


 

Health news:
 
June 2010 - Dec 2013

Minimizing breast cancer risk

May 2010

Time to move beyond salt ?

Salt hypothesis vs. reality

Is sodium bad?

April 2010

Salt studies: the latest score

From Dahl to INTERSALT

Salt hypothesis' story

March 2010

Salt war

Do bone drugs work?

Diabetes vs. drugs, 3:0?

February 2010

The MMR vaccine war: Wakefield vs. ?

Wakefield proceedings: an exception?

Who's afraid of a littl' 1998 study?
 

January 2010

Antibiotic children

Physical activity benefits late-life health

Healthier life for New Year's resolution

 

December 2009

Autism epidemic worsening: CDC report

Rosuvastatin indication broadened

High-protein diet effects

 

November 2009

Folic acid cancer risk

Folic acid studies: message in a bottle?

Sweet, short life on a sugary diet

 

October 2009

Smoking health hazards: no dose-response

C. difficile warning

Asthma risk and waist size in women

 

September 2009

Antioxidants' melanoma risk: 4-fold or none?

Murky waters of vitamin D status

Is vitamin D deficiency hurting you?

 

August 2009

Pill-crushing children

New gut test for children and adults

Unhealthy habits - whistling past the graveyard?

 

July 2009

Asthma solution - between two opposites that don't attract

Light wave therapy - how does it actually work?

Hodgkin's lymphoma in children: better alternatives

 

June 2009

Hodgkin's, kids, and the abuse of power

Efficacy and safety of the conventional treatment for Hodgkin's:
behind the hype

Long-term mortality and morbidity after conventional treatments for pediatric Hodgkin's

 

May 2009

Late health effects of the toxicity of the conventional treatment for Hodgkin's

Daniel's true 5-year chances with the conventional treatment for Hodgkin's

Daniel Hauser Hodgkin's case: child protection or medical oppression?

April 2009

Protection from EMF: you're on your own

EMF pollution battle: same old...

EMF health threat and the politics of status quo
 

March 2009

Electromagnetic danger? No such thing, in our view...

EMF safety standards: are they safe?

Power-frequency field exposure
 

February 2009

Electricity and health

Electromagnetic spectrum: health connection

Is power pollution making you sick?

January 2009

Pneumococcal vaccine for adults useless?

DHA in brain development study - why not boys?

HRT shrinks brains

NEWS ARCHIVE
2009
2008
2007

Bookmark and Share
 

March 2009

Power-frequency field exposure

EMF&Health - EMF spectrum - Electricity }2 - Official view 2 - Politics 2 - Protection

Power-frequency field (PFF) is produced by the standard 50/60Hz electricity in power and distribution lines, indoor and outdoor wiring and electrical devices of all types. Average 24-hour residential PFF exposure in the U.S. is around 1.2mG, with 95% of the population being in the 0.3-3.4mG range (Zaffanella, 1998). Similar levels of exposure have been found for children in Canada (Deadman et al. 1999) and in American woman (McCurdy et al. 2001).

This magnetic field strength corresponds, in so called far field (over 10 wavelengths away from the source), to the electric field average intensity of 0.038kV, and 0.009-0.1kV 95% range.

Actual exposure to these two fields, however, varies unpredictably due to nearly all of it taking place in near field (less than 1 wavelength from the source, with the wavelength at 60Hz frequency being 5,000km). Main sources of exposure are power lines, electrical wiring, electric appliances and electrical devices in general.

Electromagnetic fields weaken rapidly with the distance from the source. Thus, the strength of energy field created by power lines depends on the power line voltage and distance from the line, as shown in the table below (EPA 1992).

TYPICAL POWER LINES ENERGY FIELDS

Line voltage

Electric (kV) / Magnetic* (mG) field

Below line

at 50m

at 100m

at 200m

at 300m

125kV

1 / 30

0.5 / 6.5

0.07 / 1.7

0.01 / 0.4

0.003 / 0.2

230kV

2 / 58

1.5 / 20

0.3 / 7

0.05 / 1.8

0.01 / 0.8

500kV

7 / 87

3 / 30

1 / 12.6

0.3 / 3.2

0.1 / 1.4

* since magnetic field fluctuates with the current flow (usage), it is given as a mean value

Distribution lines operate at lower voltage, but are also generally closer. According to NJDE (New Jersey Department of Energy), some underground 69kV distribution lines may produce as high as 55mG fields directly above the line; at 50m distance, it is down to about 1mG (also, the highest NJDE measurement under power lines was 130mG, significantly more than the typical maximum above; the lowest was 8mG).

Interior wiring voltage level, at 0.11/0.22kV, is a small fraction of that in power and distribution lines. However, it can be very close to the body, and its field strength may not be negligible. There is no official figures for it, but judging on the voltage/distance/field relationships for the power and distribution lines, it could reach up to a few milligauss at 1 foot distance. Enough to pay attention not to have it in the wall next to your bed - and much less next to your child's.

Electrical devices are intermittent source of exposure. Duration-wise, for most people these exposures are insignificant compared to those to power and distribution lines, if present, and even compared to exposure from interior wiring. However, energy fields produced by these devices are often much stronger, and one should be aware of them. Typical emissions for some common electrical devices are given in the following table (EPA 1992). Note that 1mG=0.1μT (microtesla).

ELECTRICAL DEVICE

MAGNETIC FIELD (mG), highest/lowest setting

@6 inch

@1 foot

@2 feet

@4 feet

Can openers

1500/500

300/40

30/3

4/-

Power saws

1000/50

300/1

40/-

4/-

Vacuum cleaners

700/100

200/20

50/4

10/-

Hair dryers

700/1

70/-

10/-

1/-

Mixers

600/30

100/5

10/-

-/-

Electric shaver

600/4

100/-

10/-

1/-

Microwave ovens

300/100

200/1

30/1

20/-

Electric pencil sharpeners

300/20

90/8

30/5

30/-

Air cleaners

260/110

50/20

8/3

2/-

Ceiling fans

...

50/-

6/-

1/-

Drills

200/100

40/20

6/3

-/-

Electric ranges

200/20

30/-

9/-

6/-

Copy machines

200/4

40/2

13/1

4/-

Portable heathers

150/5

40/5

8/-

1/-

Food processors

130/20

20/5

3/-

-/-

Blenders

100/30

20/5

3/-

-/-

Fluorescent lights

100/20

30/-

8/-

4/-

Dishwashers

100/10

30/6

7/2

1/-

Washing machines

100/4

30/1

6/-

-/-

Conventional-face clocks

...

30/1

5/-

3/-

Color TV

...

20/-

8/-

4/-

Window air conditioners

...

20/-

6/-

4/-

Battery chargers

50/3

4/2

-/-

-/-

Refrigerators

40/-

20/-

10/-

10/-

Digital clock

...

8/-

2/-

1/-

PC screens

20/7

6/2

3/1

-/-

Irons

20/6

3/1

-/-

-/-

Toasters

20/5

7/-

-/-

-/-

Electric ovens

20/4

5/1

1/-

-/-

Baby monitor

15/4

2/-

-/-

-/-

Coffee makers

10/4

1/-

-/-

-/-

Electric cloth dryers

10/2

3/-

-/-

-/-

Fax machines

9/4

2/-

-/-

-/-

Electric slow cookers

9/3

1/-

-/-

-/-

Tuners/Tape players

3/1

1/-

-/-

-/-

These are, of course, average values; any particular device can deviate from the average value for its type, possibly significantly. The list is also far from being complete, and some devices emit much stronger field than one would reasonably expect. For instance, clock radios, as small as they are, can generate magnetic fields

in excess of 1000mG

at small distances  (Vistnes, 2001).

Also, many electrical devices emit at more than a single, 60Hz frequency. In addition to this basic frequency, TV and PC screens produce 10,000-30,000Hz fields, microwaves produce 2.45MHz fields, and so on.

Keep in mind that magnetic field strength

increases exponentially with reduced distance.

Some devices are used very close to the body, in which case the level of radiation skyrockets. For instance, at 3cm distance (1.2 inch) magnetic field can reach 20,000mG with, hair dryer, 15,000mG with electric shaver, 4,000mG from fluorescent light, or 560mG with portable radio.

The longer duration of exposure, the more important becomes its level. Home sawing machine produces 12mG field at chest level, and 5mG at head level; industrial machines can reach 35mG at chest level and 215mG at knee level (Sobel 1994). More recent study (Kelsh et al. 2003) puts mean exposure from sawing machines at several hundreds milligauss.

There are also other sources of electromagnetic fields that can significantly add up to your total exposure. Security systems (metal detectors, airport security, badges, stores, libraries, etc.) can create fields thousands of milligauss strong (Kjellsson, 2002). Magnetic fields in 60Hz electric trains have been reported to be as high as 500mG in the passenger areas at seat height.

Think electric cars, elevators, store escalators, air conditioners, portable heathers, electrical heating systems, toasters...

And it doesn't end with the energy field produced by electricity. Another two significant forms of exposure to electrical energy are not even covered officially. One are irregular high-frequency harmonics and transient currents - giving to the power the affectionate nickname dirty electricity - that form in increasingly complex electrical circuitry. The other is stray voltage, the electricity that leaks out of the system. They both escape electrical lines and wiring and travel through conductive media, such as water pipes, sink, bathtub, floors, or human body. There is a solid body of evidence that exposure to these currents

can make sensitive individuals very sick.

Information on measuring and minimizing these currents can be found in Protection from EMF.

Switching back to magnetic fields created by standard electricity, most of exposure figures don't look really alarming if referenced to the official safety limit for this frequency, which is 1,000mG. But it becomes entirely different story when referenced to the levels of exposure linked to significantly increased risk of childhood leukemia (from around 2mG up), or even occupational exposures that have been linked to significantly increased risk of various diseases, including cancer (from about 10mG up).

How is this magnitude of discrepancy between what is officially proclaimed "safe" and prevailing scientific data even possible? The answer is complex, and requires becoming more familiar with the official reasoning, research results, and powerful interests shaping up this controversy. That comes up next.

TOPñ

YOUR BODY  HEALTH RECIPE  NUTRITION  TOXINS  SYMPTOMS